
October 14, 1999

LaRC A Distributed, Heterogeneous Computing
Environment for Multidisciplinary Design &

Analysis of Aerospace Vehicles

Raj Sistla, Gus Dovi, and Phillip Su

Computer Sciences Corporation
Hampton, Virginia.

5th National Symposium on Large-scale Analysis, Design, and
Intelligent Synthesis Environments

October 12-15, 1999 / Williamsburg, VA.

October 14, 1999

Outline

• Motivation
• Background
• Environment
• Example
• Results
• Summary
• Future work

October 14, 1999

Framework Definition

A framework for multidisciplinary design optimization
is defined as a hardware and software architecture that
enables integration, execution, and communication
among diverse disciplinary processes.

October 14, 1999

Motivation for a Framework

• Aerospace vehicle design is multidisciplinary in nature.

• Different disciplines execute independent of each other.

• Potential exists for concurrent execution of some subtasks.

• Hardware requirements vary with the discipline.

• Large quantities of data and files generated.

• Potential exists for automating the design process.

October 14, 1999

Goal

Goal

Knowledge about design

Design freedom

Conceptual Preliminary Detailed

Time into design process

100%

Aerospace Design Vision

Improved Distribution of Knowledge & Efforts

October 14, 1999

Framework History

1992 1996 1998 20001997

FIDO : Framework for Interdisciplinary Design Optimization
CJOpt: CORBA - Java Optimization

FIDO CJOpt

Commercial developments (MDICE, iSIGHT 3.0, ...)
MDO

Framework

% effort devoted to framework related issues
% effort available for application

October 14, 1999

Application (year) HSCT2.1 (94 - 96) HSCT3.5 (95 - 97) HSCT4.0 (97 - 99)
Design Variables 5 7 271
Constraints 6 6 31868
Major Legacy Codes
 Aerodynamics
 Structures
 Performance
 Propulsion

Wingdes
ELAPS
Range equation
Engine deck

ISAAC
COMET
Range equation
Engine deck

CFL3D, USSAERO
GENESIS
FLOPS
FLOPS

Analysis Processes
(without looping)

10 20 70

Analysis Control
 Major Loops

 Load conditions
 Mission conditions
 Process (with loops)
 Total time

Weight Conv., Trim

2
1
O(10)
O(minutes)

Weight Conv.,
Aeroelastic, Trim
2
1
O(100)
O(hours)

Aeroelastic, Trim

8
10
O(1000)
O(1 day)

Oprimization Cycle
 (ndv+1) #analysis
processes
 Total time/cycle

O(100)
O(10 minutes)

O(1000)
O(3 hours)

O(100,000)
O(3 days)

HSCT Applications

October 14, 1999

CJOpt History

1998 March Recommended approach based on CORBA and Java.

August Work started on implementing HSCT4.0.

June Completed implementation of Analysis module in HSCT4.0.

October Implementation tested, debugged, and validated.

1999

HSCT4.0: Structural model 43,578 dof
 CFD grid 600,000 grid points
 linear Aero model 1,200 panels

 Total data transferred > 1 terabyte

October 14, 1999

CJOpt Building Blocks

• Common Object Request Broker Architecture (CORBA).
• Java Language and Application Programming Interfaces.
• SQL compliant database (miniSQL)

October 14, 1999

CORBA fundamentals

• Object-oriented in a Client-Server environment.
• Client needs to know only an “interface” for requesting
 services of a server object.
• Server does bulk of the work in providing this service.
• Client is not required to know:

– How the service is provided,
– Language the services are implemented in,
– Where the service resides.

October 14, 1999

Trim

Loads Convergence

Ussaero
Compute_Lift_Drag

Lift &
 Drag

Trim_aircraft

Trim alpha and delta

client

server/client

server

Clients and Servers

r_c = Trim_aircraft (altitude, Mach, alpha, delta);
r_c = Compute_Lift_Drag (Mach, alpha, delta, cl, cd);

October 14, 1999

CORBA fundamentals (contd.)

software bus

AerodynamicsAerodynamics
SGI Origin 2000

DATABASEDATABASE

Sun SPARCIBM RS 10K
StructuresStructures

PropulsionPropulsion
Sun SPARC

PerformancePerformance
Sun SPARC

OptimizationOptimization
Sun SPARC

IBM RS 10K
 Master Master

Loads TransferLoads Transfer

Sun SPARC
 Geometry Geometry
SGI RS 10K

IBM RS 10K
 Service Service

• specification for developing distributed applications.
• promotes re-use of existing software components.

October 14, 1999

Function
Call

Client Host Server Host

ORBORB
InterfaceInterface

Client Object

Object Request BrokerObject Request Broker

IDLIDL
StubsStubs

IDLIDL
SkeletonSkeleton

CORBA fundamentals (contd.)

• ORB is a software component that mediates transfer of messages.
• hides the underlying complexity of network programming.

October 14, 1999

Programming Steps

• “wrap” legacy code as an object.
• define an interface to this object.
• write implementation for the
interface.
• write server code to register with
ORB.
• write application using CORBA
objects
 or,
 write JavaBeans, import into
Builder, build application.
• run client application.

October 14, 1999

Programming Steps

• “wrap” legacy code as an object.
• define an interface to this object.
• write implementation for the
interface.
• write server code to register with
ORB.
• write application using CORBA
objects
 or,
 write JavaBeans, import into
Builder, build application.
• run client application.

module Intr
{
 exception gotNegativeFlag
 {
 long errorNumber;
 };

 interface trim
 {
 long goTrim (in float mach, in float altitude,
 out float alpha, out float delta)
 raises(gotNegativeFlag);
 };
};

October 14, 1999

Programming Steps

• “wrap” legacy code as an object.
• define an interface to this object.
• write implementation for the
interface.
• write server code to register with
ORB.
• write application using CORBA
objects
 or,
 write JavaBeans, import into
Builder, build application.
• run client application.

Public class Trim implements …
{
 implement the function goTrim ….

 public int goTrim (float mach, float altitude,
 float alpha, float delta)
 {
 get data from database
 do file management
 …..
 Err_flag = execTrim(… … …);
 …..
 update database
 dispose files
 }

}

October 14, 1999

Programming Steps

• “wrap” legacy code as an object.
• define an interface to this object.
• write implementation for the
interface.
• write server code to register with
ORB.
• write application using CORBA
objects
 or,
 write JavaBeans, import into
Builder, build application.
• run client application.

Public class TrimServer
{
 public static void main ()
 {
 trim myTrim = null;
 ORB orb = ORB.init();
 try
 {
 myTrim = new _tie_trim (new TrimImp());
 _CORBA_Orbix.impl_is_ready(“trimSrv”);
 orb.disconnect(trim);
 }
 catch (SystemException se)
 {
 process error
 }
 …..

}

October 14, 1999

Programming Steps

• “wrap” legacy code as an object.
• define an interface to this object.
• write implementation for the
interface.
• write server code to register with
ORB.
• write application using CORBA
objects
 or,
 write JavaBeans, import into
Builder, build application.
• run client application.

{
 …..
 trim myTrim = trimHelper.bind (“:trimSrv”, “cmb”);
 …..

 int flg = myTrim.goTrim(mach, altitude, alpha, delta);
}

October 14, 1999

Programming Steps

• “wrap” legacy code as an object.
• define an interface to this object.
• write implementation for the
interface.
• write server code to register with
ORB.
• write application using CORBA
objects
 or,
 write JavaBeans, import into
Builder, build application.
• run client application.

Cycle No =
 maxCycles?

Initialize Update Cycle

Compute Drag

Estimate Weight

Stru Gradients

Aero Gradients

Perf Gradients

Optimization

No

Yes

goHSCT

October 14, 1999

JavaBeans Technology

Visual Interface

Client Bean
Client HostServer Host

ORBORB
InterfaceInterface

Client Object

Object Request BrokerObject Request Broker

IDLIDL
StubsStubs

IDLIDL
SkeletonSkeleton

October 14, 1999

Data Management

• Central relational database.
• Commercial SQL-compliance.
• Objects use Java Data Base Connectivity (JDBC).
• User-specific tables for transient data.
• File management information stored in database.

October 14, 1999

Baseline
design variables

Analysis

Calculate
constraints
& objective

function

Gradient-
based

optimizer

Adjust
move
limits

Sensitivity
analysis

Accept
design

Converged?Final optimized
design variables

yes

no

gradients, objective,
constraints, design
variables (current)

gradients, objective,
constraints, design

variables (previous)

design
accepted

objective,
constraints
(current)

objective,
constraints
(current)

responses

de
si

gn
 v

ar
ia

bl
es

(n

ew
)

Problem

October 14, 1999

Design
Variables

Geometry

Nonlinear
corrections

Stress &
buckling

Ground
scrape

Polars

Rigid trim

Weights

Displacements
Stresses,
Buckling

limits
Performance
constraints

Achievable
scrape lift

GTOW

derived weight,
geom. & metrics,
derived FEM &
section props.

derived nonlinear
aero surface grids

derived linear
aero grids

cruise weight and c.g.,
GTOW and c.g.

nonlinear
correctionscruise weight & c.g.

cruise
CL, CD

trimmed
aero

pressures
(cruise)

cruise
displacements

tables of mission
CL, CDi, CDf , CDw, CDm

takeoff and
landing speeds loads (2-7)

Displace-
ments

Loads
ConvergencePerformance

Analysis

October 14, 1999

Legend:
lc: load condition
$$: 42, 43, 45, 52, 55, 56
 *: 2, 3, 4, 5, 6, 7

i = 1

disp<cycleNo>.<iterNo>, dispCruise<cycleNo>

deltaDisp_lc*
deltaDisp_EAL_lc*

(disp<cycle>.<iterNo> - dispCruise<cycleNo>)
p r e-S 2 W

i = i + 1

R I G I D T R I M trimmed loads trimloads_LX$$.

D I S P. C A L C

trimloads_ LX$$

disp<cycleNo>.<iterNo>

modified wavedrag deck
S 2 W

wave_LX$$
dispNodes
deltaDisp_EAL_lc*

wavemod_lc*

wavemod_lc*
wave.in

No All
Load Conditions?

Yes

have all load conditions
EXCEPT Taxi been run?

lc=2lc = lc + 1

error normE N O R M P

prev_trimloads_LX$$
trimloads_ LX$$

[eNormP]i > 1 ?
yes

no

yes
eNormP < Tol?
 i <= max_iter CONTINUE

no

Loads Convergence

October 14, 1999

wavemod_lc*
wave.in

Yes

U S S A E R O

case_lc*.δussaero input file

case_lc*.δ

linear pressures for α, δ
aero_lc*.δ

3δ ?

ussaero must be executed for
3 wing angles of attack times
3 tail angles of incidenceNo

W D 2 U S A

Concat. aero_α δ s
pressures for all α, δ

aerocat_lc*

 δ = δ + 1

update bracketing α s & δ s
based on earlier experience

T R I M

aerocat_lc* (linear pressures)
mass_m*# (masses)
nlcor_c*$ (nonlinear corrections)

trimloads_LX$$
trim loads

aero_lc*.δ

Legend:
 *: 1, 2, 3, 4, 5, 6, 7
 δ : 1, 2, 3
*#: 03, 05
*$: 01, 02, 03, 04, 05, 06, 07
$$: 79, 42, 43, 45, 52, 55, 56

Rigid Trim

October 14, 1999

-1

-0.95

-0.9

-0.85

-0.8

-0.75

Sc
al

ed
 a

lp
ha

1 2 3 4 5 6 7 8 9 10
Iteration

Load Condition 2

4.5

4.8

5.0

5.2

5.5

Sc
al

ed
 a

lp
ha

1 2 3 4 5 6 7 8 9 10
Iteration

Load Condition 3

10.5

11.0

11.5

12.0

Sc
al

ed
 a

lp
ha

1 2 3 4 5 6 7 8 9 10
Iteration

Load Condition 4

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

Sc
al

ed
 a

lp
ha

1 2 3 4 5 6 7 8 9 10
Iteration

Load Condition 5

8.5

9.0

9.5

10.0

10.5

Sc
al

ed
 a

lp
ha

1 2 3 4 5 6 7 8 9 10
Iteration

Load Condition 6

-4.3

-4.2

-4.1

-4

-3.9

-3.8

-3.7

-3.6

Sc
al

ed
 a

lp
ha

1 2 3 4 5 6 7 8 9 10
Iteration

Load Condition 7

Loads Convergence

October 14, 1999

Concluding Remarks

• Developed a component based framework.
• Using industry standards.
• Introduced high fidelity analyses early in design process.
• User spared the complexity of network programming.
• User spared data and file management tasks.
• Development time reduced as each object can be tested
 and debugged independently.
• Disciplines can be reused & replaced with ease.
• Capitalized on parallelisms in analysis with ease.
• Easy to configure and use via graphical interface.

October 14, 1999

Future Work

• Reduce execution time by exploiting all parallelisms.
• Implement the complete optimization problem.
• Implement legacy objects as Enterprise Java Beans.
• Implement CJOpt in a web browser environment.
• Use chart beans to monitor various design quantities.
• Use scientific visualization code from Syracuse.
• Provide web-database interface for easier interaction
 with the database..

October 14, 1999

HSCT2.1 Problem Implementation
START

Aerodynamic Analysis

Performance

Propulsion

No

Drag Polars

Weight Estimation

Gradient Computation

PerformanceStructuralAerodynamic

 Optimization

No

EXIT
Yes

Fuel Wt.
 Converged?

Yes

Initialize

Structural Analysis

Analysis

CycleNo. =
max Cycles?

Cycle No =
 maxCycles?

Initialize Update Cycle

Compute Drag

Estimate Weight

Stru Gradients

Aero Gradients

Perf Gradients

Optimization

No

Yes

goHSCT

